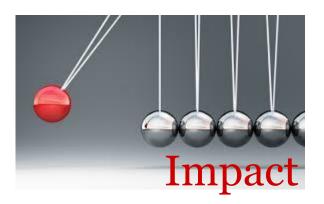


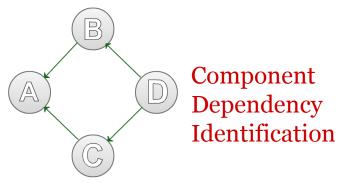
Assessing Change Proneness at the Architecture Level: An Empirical Validation

Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Konstantinos Tzouvalidis, Alexander Chatzigeorgiou, Paris Avgeriou, Ignatios Deligiannis



- > Context
- > Module Change Proneness Measure
- > Empirical Validation
- > Results
- > Discussion

Change Impact Analysis


Benefits of "Predicting" Change Proneness

Before... CHANGE After...

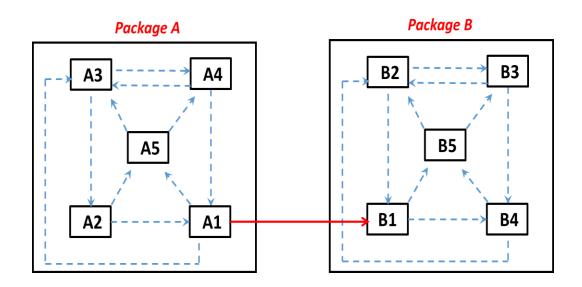
Change Impact Analysis and Architecture

> Not any metrics at the Architecture Level

> Design and Code Level: Coupling & Size

The degree to which one class is connected to other classes of the system

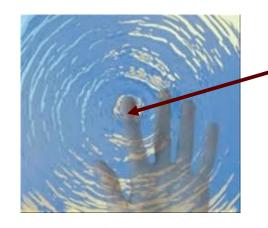
> Alternatives?


Propose a new metric

Aggregate an existing one from design level

Aggregation of Design Metrics

- > How can the strength be aggregated?
 - Intra-module
 - Inter-module

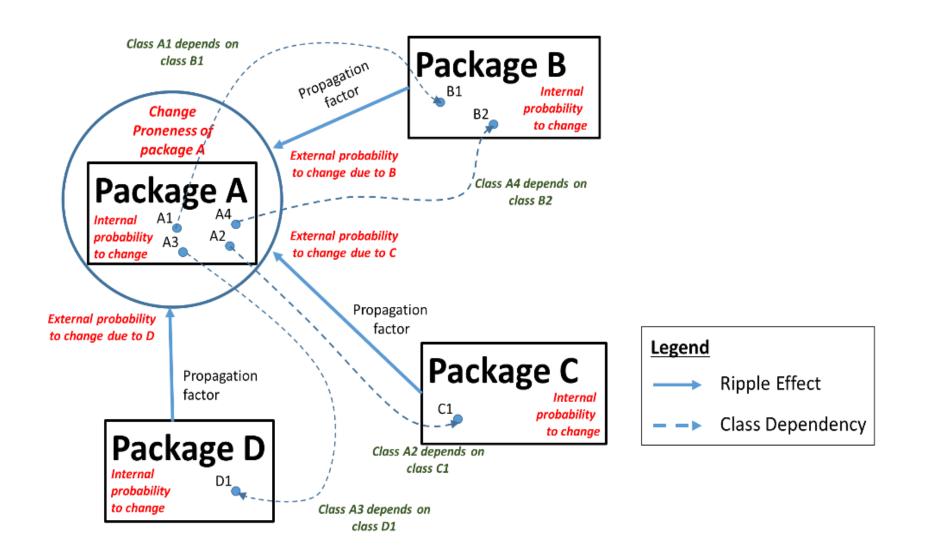


Change Proneness Components

HISTORICAL

> What is needed?

The source of the ripple effect (i.e., change)



- > Context
- Module Change Proneness Measure
- > Empirical Validation
- > Results
- > Discussion

Change Scenario

Putting the pieces together

> Joint Probability of All Events

Even one change from any dependency is enough for the module to change

$$MCPM(A) = Joint Probability \{P(A), P(A:external_B), P(A:external_C), P(A:external_D)\}$$

 $P(A:external_B) = P(A|B) \cdot P(B)$

P(A|B) is the **propagation factor** between module B and A (i.e., the probability that a change made in B is emitted to A). P(B) refers to the **internal probability** of changing module B.

Putting the pieces together: Propagation Factor

$$REM(B \rightarrow A) = \sum_{i=0}^{i < dependencies(A \rightarrow B)} \frac{NPrA(Bi) + NOP(Bi) + NDMC(Ai \rightarrow Bi)}{NOM(Bi) + NOA(Bi)}$$

NDMC: Number of direct method calls

NOM: Number of methods

NOA: Number of attributes

NPrA: Number of protected attributes (only for inheritance)

NOP: Number of polymorphic methods (only for inheritance)

- > Context
- > Module Change Proneness Measure
- > Empirical Validation
- > Results
- > Discussion

Case Study Design

Goal of this study:

Compare the validity of MCPM to other metrics

Three package-level coupling metrics
Afferent Coupling (Ca)
Efferent Coupling (Ce)
Instability (I)

Case & Data Collection

- Demographics
 - Project
 - Version
 - Package name
- Assessors
 - MCPM
 - Ca
 - Ce
 - I
- Actual changes

160 Java packages ~ Units of analysis ~30 packages per project

Data Analysis

Criterion	Test	Variables	
	D	Independent: Assessors	
Correlation	Pearson correlation	Dependent: Actual changes	
	Correlation	(last version of the projects)	
	Chaoman	Independent: Assessors	
Consistency	Spearman correlation	Dependent: Actual changes	
	Correlation	(last version of the projects)	
	Chaoman	Independent: Assessors	
Tracking	Spearman correlation	Dependent: Actual changes	
	Correlation	(across all versions)	
		Independent: Assessors	
Predictability	Linear Regression	Dependent: Actual changes	
		(last version of the projects)	
Diamination	Kruskal Wallis	Testing: Assessors	
Discriminative Power	Test	Grouping: Actual changes	
1 OWCI	1000	(last version of the projects)	
Reliability	all the aforementioned tests		
Remainity	(separately for ea	ch project –across all versions)	

- > Context
- > Module Change Proneness Measure
- > Empirical Validation
- > Results
- > Discussion

TABLE V. CORRELATION ANALYSIS

Project	МСРМ	Ca	Ce	I
wro4j	.348	.288	.346	.102
Guava	.487	.407	.272	.109
commons-lang	.805	.156	.754	166
joda-time	.205	.090	187	409
Wicket	.476	.412	.791	016
% sig.	80%	40%	40%	0%

TABLE VI. CONSISTENCY ANALYSIS

Project	MCPM	Ca	Ce	I
wro4j	.398	.052	.379	.110
Guava	.437	.484	.409	.197
commons-lang	.306	.110	.242	.013
joda-time	.378	.321	161	400
Wicket	.419	069	.623	.059
% sig.	60%	20%	40%	0%

TABLE VII. TRACKING ANALYSIS

Project	МСРМ	Ca	Се	I
wro4j	.390	.050	.375	.105
Guava	.400	.450	.301	.150
commons-lang	.301	.106	.240	.010
joda-time	.370	.317	155	395
Wicket	.410	064	.618	.052
% sig.	40%	20%	40%	0%

TABLE V. CORRELATION ANALYSIS

Project	МСРМ	Ca	Ce	I
wro4j	.348	.288	.346	.102
Guava	.487	.407	.272	.109
commons-lang	.805	.156	.754	166
joda-time	.205	.090	187	409
Wicket	.476	.412	.791	016
% sig.	80%	40%	40%	0%

TABLE VI. CONSISTENCY ANALYSIS

Project	МСРМ	Ca	Се	I
wro4j	.398	.052	.379	.110
Guava	.437	.484	.409	.197
commons-lang	.306	.110	.242	.013
joda-time	.378	.321	161	400
Wicket	.419	069	.623	.059
% sig.	60%	20%	40%	0%

TABLE VII. TRACKING ANALYSIS

Project	МСРМ	Ca	Ce	I
wro4j	.390	.050	.375	.105
Guava	.400	.450	.301	.150
commons-lang	.301	.106	.240	.010
joda-time	.370	.317	155	395
Wicket	.410	064	.618	.052
% sig.	40%	20%	40%	0%

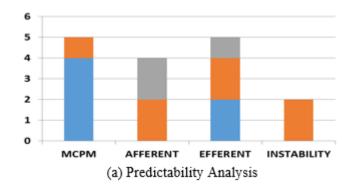
TABLE III. PREDICTIVE POWER

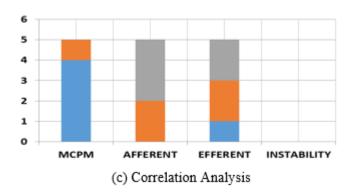
Project	MCPM	Ca	Ce	I
wro4j	.030	.031	.030	.032
Guava	.104	.110	.115	.119
commons-lang	.067	.112	.075	.125
joda-time	.319	.324	.320	.320
Wicket	.012	.012	.008	.013
% sig.	60%	40%	40%	0%

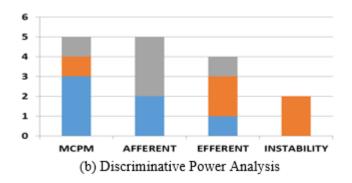
TABLE IV. DISCRIMINATIVE POWER

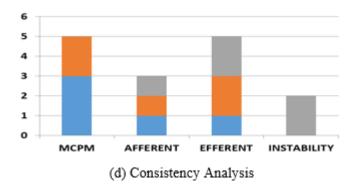
Project	МСРМ	Ca	Се	I
wro4j	.008	.587	.049	.613
Guava	.059	.277	.139	.835
commons-lang	.999	.727	.999	.889
joda-time	.381	.190	.571	.381
wicket	.000	.734	.000	.862
% sig.	40%	0%	40%	0%

TABLE III. PREDICTIVE POWER


Project	МСРМ	Ca	Ce	I
wro4j	.030	.031	.030	.032
Guava	.104	.110	.115	.119
commons-lang	.067	.112	.075	.125
joda-time	.319	.324	.320	.320
Wicket	.012	.012	.008	.013
% sig.	60%	40%	40%	0%


TABLE IV. DISCRIMINATIVE POWER


Project	МСРМ	Ca	Се	I
wro4j	.008	.587	.049	.613
Guava	.059	.277	.139	.835
commons-lang	.999	.727	.999	.889
joda-time	.381	.190	.571	.381
wicket	.000	.734	.000	.862
% sig.	40%	0%	40%	0%





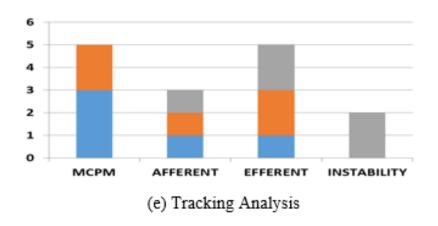


TABLE VIII. RELIABILITY ANALYSIS

Criterion	мсрм	Ca	Се	I
Corelation	14	7	9	0
Consistency	13	6	9	2
Tracking	13	6	9	2
Predictive Power	14	6	11	4
Discriminative Power	12	9	8	4
Total	66	34	46	12

- > Context
- > Module Change Proneness Measure
- > Empirical Validation
- > Results

> Discussion

Assessing Power

Combining both aspects

- Internal probability
- Ripple effects
- Strength of Dependencies

Tracking vs. Consistency

Efferent vs. Afferent Coupling

Implications

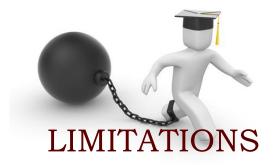
Researchers

Practitioners

Use in quality monitoring processes

Tailoring to a higher granularity

Test Case Prioritization


Explore usefulness for practitioners

Tool Support

Replicate with larger history

Threats to Validity

Construct Validity:

- Tool Accuracy
- Method Accuracy

Lack of Generalization to:

- Programming Language / Paradigm

Reliability:

- No research bias
- Public repositories

Questions?

Thank you for your attention!