
Assessing Change Proneness at the
Architecture Level: An Empirical

Validation

Elvira-Maria Arvanitou, Apostolos Ampatzoglou,
Konstantinos Tzouvalidis, Alexander Chatzigeorgiou,
Paris Avgeriou, Ignatios Deligiannis

Outline

› Context

› Module Change Proneness Measure

› Empirical Validation

› Results

› Discussion

Change Impact Analysis

Impact

Ripple Effect

test cases

Benefits of “Predicting”
Change Proneness

Before… After…

Program Comprehension

Effort
Estimation

Component
Dependency
Identification

Change Impact Analysis and
Architecture

› Not any metrics at the Architecture Level

› Design and Code Level: Coupling & Size
The degree to which one class is connected to other classes of the system

› Alternatives?
Propose a new metric

Aggregate an existing one from design level

Aggregation of Design Metrics

› How can the strength be aggregated?

• Intra-module

• Inter-module

Change Proneness Components

› What is needed?
The source of the
ripple effect (i.e.,
change)

A way to transfer the
change

Outline

› Context

› Module Change Proneness Measure

› Empirical Validation

› Results

› Discussion

Change Scenario

Putting the pieces together

› Joint Probability of All Events
Even one change from any dependency is enough for the module to change

MCPM(A) = Joint Probability {P(A), P(A:externalB),

P(A:externalC), P(A:externalD)}

P(A:externalB) = P(A|B) • P(B)

P(A|B) is the propagation factor between module B and A

(i.e., the probability that a change made in B is emitted to A).

P(B) refers to the internal probability of changing module B.

Putting the pieces together:
Propagation Factor

𝑅𝐸𝑀 BA =

𝑖=0

𝑖<𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠(AB)
𝑁𝑃𝑟𝐴 𝐵𝑖 + 𝑁𝑂𝑃 𝐵𝑖 + 𝑁𝐷𝑀𝐶(AiBi)

𝑁𝑂𝑀 𝐵𝑖 + 𝑁𝑂𝐴(𝐵𝑖)

NDMC: Number of direct method calls

NOM: Number of methods

NOA: Number of attributes

NPrA: Number of protected attributes (only for inheritance)

NOP: Number of polymorphic methods (only for inheritance)

Outline

› Context

› Module Change Proneness Measure

› Empirical Validation

› Results

› Discussion

Case Study Design

Goal of this study:

Compare the validity of MCPM to other metrics

Three package-level coupling metrics
Afferent Coupling (Ca)
Efferent Coupling (Ce)
Instability (I)

Case & Data Collection

160 Java packages ~ Units of analysis

~30 packages per project

 Demographics

• Project
• Version
• Package name

 Assessors

• MCPM
• Ca
• Ce
• I

 Actual changes

Data Analysis

Criterion Test Variables

Correlation
Pearson

correlation

Independent: Assessors

Dependent: Actual changes

(last version of the projects)

Consistency
Spearman

correlation

Independent: Assessors

Dependent: Actual changes

(last version of the projects)

Tracking
Spearman

correlation

Independent: Assessors

Dependent: Actual changes

(across all versions)

Predictability Linear Regression

Independent: Assessors

Dependent: Actual changes

(last version of the projects)

Discriminative

Power

Kruskal Wallis

Test

Testing: Assessors

Grouping: Actual changes

(last version of the projects)

Reliability
all the aforementioned tests

(separately for each project –across all versions)

Outline

› Context

› Module Change Proneness Measure

› Empirical Validation

› Results

› Discussion

Results

Results

Results

Results

Results

Results

Outline

› Context

› Module Change Proneness Measure

› Empirical Validation

› Results

› Discussion

Assessing Power

MCPM

Ce

Ca

Combining both aspects
• Internal probability
• Ripple effects
• Strength of Dependencies

Tracking vs. Consistency

Efferent vs. Afferent Coupling

Implications

Researchers

Use in quality monitoring processes

Test Case Prioritization

Tool Support

Practitioners

Tailoring to a higher granularity

Explore usefulness for practitioners

Replicate with larger history

Threats to Validity

LIMITATIONS

Construct Validity:

- Tool Accuracy

- Method Accuracy

Lack of Generalization to:

- Programming Language / Paradigm

Reliability:

- No research bias

- Public repositories

| 27

Thank you for your attention!

Questions?

